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Abstract: A coupled harmonic oscillator picture is developed for the nonlinear optical response of donor—acceptor 
substituted conjugated polyenes using the reduced single electron density matrix calculated within the time-dependent 
Hartree—Fock (TDHF) framework. The mechanism of the optical response is related to a few dominant oscillators 
which represent collective electron-hole excitations. The nature of these oscillators is analyzed. The optimization 
of the off-resonant nonlinear susceptibilities /3(0) and y(0) and the roles of Coulomb and exchange interactions are 
investigated. 

I. Introduction 

Conjugated polymers possess large nonlinear optical suscep
tibilities, and are good candidates for optical devices. Their 
nonlinear optical properties have therefore attracted considerable 
research activity.1-9 In addition, being one-dimensional sys
tems, electron correlations have strong effects on their optical 
properties.10 This makes them ideal model systems for inves
tigating strong electron—electron correlations. 

Various computational techniques have been applied to the 
study of nonlinear optical properties of conjugated polymers. 
The finite-field approach is used to calculate the static 
polarizabilities.' •'' ~14 It has been employed frequently for large 
molecules at the semiempirical and Hartree—Fock levels. The 
time-dependent Hartree—Fock (TDHF) method, formulated 
using either the wave function15-17 or the one-particle density 
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matrix6,7 in the presence of an external field, may be used to 
calculate the static as well as the dynamic polarizabilities. The 
sum-over-states (SOS) procedure has been widely used as well, 
in particular for identifying the excited states which dominate 
the resonant response.2,4,5,18 Electron correlation effects may 
be incorporated into the states by configuration interaction (CI). 
However, this requires extensive computer effort even for 
relatively small systems, because wave functions of all excited 
states in the frequency range of interest need to be calculated. 
To avoid this difficulty, the independent electron approximation 
[employing the Hiickel or the Su-Schrieffer—Heeger (SSH) 
model] is frequently used.19-22 Single excitation configuration 
interaction (SCI), known in nuclear physics as the Tamm— 
Dancoff approximation (TDA), may be employed to calculate 
the excited states. It neglects correlations in the ground state 
and assumes that the stationary Hartree—Fock ground state 
I1PHF) is a good approximation for the real ground state. It 
proceeds to calculate the excited states by exciting one electron 
out of the occupied orbitals, and the excited state is represented 
by a linear combination of the single electron excitations: 
a^ah|WHF), where a* and «h are the creation and annihilation 
operators for unoccupied and occupied molecular orbitals. 
a*ah is denoted as the particle—hole (ph) transition. Tech
niques that incorporate ground state as well as excited state 
correlations include the doubly excited CI (DCI), the singly and 
doubly excited CI (SDCI), the independent electron pair 
approximation (IEPA), and the coupled-cluster approximation 
(CCA).15'23 

An alternative approach is to treat electrons as harmonically 
bound particles. This Drude oscillator model has been long 
used to calculate linear spectra.24,25 To describe optical non-
linearities, Bloembergen suggested to add a cubic anharmonic 
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term.26 This was proposed as a qualitative back of envelope 
model. To accurately describe nonlinear optical processes in 
conjugated systems, a first principle computational procedure 
is required. The reduced single electron density matrix carries 
information on charge distributions and chemical bonding.27-29 

Its diagonal elements are the electron densities whereas the off-
diagonal elements represent electron coherences or bonding. 
This is much simpler compared with the full electronic wave 
function. A coupled harmonic oscillator picture based on the 
TDHF approximation for the reduced single electron density 
matrix has been developed for conjugated polymers.6'7,30-31 It 
starts from a microscopic Hamiltonian. Using the Heisenberg 
equation of motion for a reduced density matrix, it rigorously 
maps the nonlinear optical response to the dynamics of a set of 
anharmonic oscillators. It relates the optical properties directly 
to the motions of electron—hole pairs, and avoids calculating 
the many-body wave functions. Thus, the necessary computa
tion effort is greatly reduced compared to other methods.6 More 
importantly, this approach identifies the key sources of anhar
monic couplings, provides a new perspective on the mechanism 
of nonlinear optical processes, and offers a novel unified 
physical picture of the optical response in terms of electronic 
normal modes. It has been applied to predict the saturation 
length of the third-order polarizability y,7,30 and to study non
linear optical processes in both the frequency6 and time 
domains.31 

Conjugated polymers with donor and acceptor substitutions 
often show large first-order as well as second-order hyperpo-
larizabilities. Much experimental and theoretical effort has 
focused on increasing the off-resonant hyperpolarizabilities by 
carefully designed substitutions.8,932-34 Marder and co-workers8 

have investigated the structure—property relations for several 
classes of donor—acceptor conjugated polymers, and proposed 
a correlation between polarizabilities and the bond length 
alternation (BLA), which provided some simple guidelines for 
the synthesis of materials with large off-resonant hyperpolar
izabilities. 

In this paper we apply the coupled harmonic oscillator picture 
to calculate the first- and second-order off-resonant hyperpo
larizabilities /8(0) and y(0) of donor-acceptor conjugated 
polymers. We study how to maximize the magnitudes of B(O) 
and y(0), and investigate the separate roles of Coulomb and 
exchange interactions in the nonlinear optical properties. In 
section II, we present the electronic harmonic oscillator (HO) 
(or electronic normal mode) representation, derive the equations 
of motion for the oscillators, and discuss their general properties. 
In section III, we calculate the ground state properties of 
conjugated polyenes with donor and acceptor substitutions. In 
section IV, we evaluate the off-resonant polarizabilities a(0), 
B(O), and y(0) and investigate the roles of different anharmonic 
couplings. In section V, we analyze the characters of the 
relevant oscillators and connect them to the molecular orbital 
representation. The results are finally summarized in section 
VI. 
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Figure 1. Possible electronic structures of the eight-site system: (A) 
neutral case without charge transfer; (B) half of an electron transferred; 
(C) one electron transferred; (D) two electrons transferred. 

II. Electronic Harmonic Oscillator Representation 

Our system is a conjugated polyene, substituted with a donor 
and an acceptor at each end (Figure 1). We model it as an 
iV-electron N-site system consisting of a donor, an acceptor, and 
N — 2 bridge sites. The donor and acceptor carry nuclear 
charges of +2e and 0, respectively, whereas the charge on each 
bridge site is +e, where — e is the charge of an electron. We 
adopt the Pariser—Parr—Pople (PPP) Hamiltonian for the system 
which is known to capture the essential electronic properties of 
the Ti electronic system5-7,10,30,31,35 

H = Hsm + Hc + Hea (1) 

HSSH is the Su-Schrieffer—Heeger (SSH) Hamiltonian, which 
consists of the Hiickel Hamiltonian with electron—phonon 
coupling. 

#SSH = X tj&t + ^(l/2)K(xn - xf (2) 
n,m,o n 

where Qa
nm = a^na. a„a (a„a) is an electron creation (an

nihilation) operator with spin a, tm is the energy at the nth site 
(including atomic orbital energy and the Coulomb integral 
between an electron and nuclei), tmn (m ^ n) is the electron 
hopping matrix element between the nth and mth atoms, K is 
the a-bond force constant, xn is the nth bond length along the 
chain axis z, and x is the equilibrium bond length. Assuming 
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that an electron can only hop between nearest neighbors, we 
have 

6B £jvnm'Zm> m = n 
_ m' 
/3 - ^'Azn m = n + 1 
0 otherwise 

Here en is the atomic energy of the nth site, vnm is a repulsion 
between the nth and mth sites, Zn is the nuclear charge of the 
/nth site (in units of e), /? is the mean transfer integral, /?' is the 
electron—phonon coupling constant, and Azn is the bond length 
deviation from its equilibrium value. We assume that €\ = e^, 
€N = £A, and all other atomic energies are zero, i.e., e„ = 0 (n 
= 2, ..., N — 1). Vnm is given by the Ohno formula 

U 

[1 + (rja0)
2f2 (3) 

where rnm is the distance between nth and mth sites, ao is a 
characteristic length, and U is the on-site (Hubbard) repulsion 

U=U0Ie (4) 

e is the static dielectric constant representing the screening by 
a electrons, and Ua is the unscreened on-site repulsion. 

The Coulomb interaction Hc is given by 

Hc = X ^ L d , + d / 2 ) S VnJl&m +(Vl)^LKnZnZm 
n n.m.o.o' m^n 

The three terms in Hc represent the on-site Coulomb interaction 
for electrons, the off-site Coulomb interaction, and the Coulomb 
repulsion among nuclei, respectively. The parameters are given 
in ref 6; a0 = 1.2935 A, U0 = 11.13 eV, /3 = -2.4 eV, /3' = 
-3.5 eV A-1, K = 30 eV-A"2, x = 1.41 A, and e = 1.5. These 
were adjusted to reproduce the experimental optical transition 
energy (2.0 eV) for poly acetylene.6 We expect the donor-
acceptor substitution to affect primarily the Jr electrons and not 
the a electrons. Consequently, we held e fixed in the following 
calculations. An improved parameterization which can, e.g., 
take into account the spatial dependence of e can be made using 
effective Hamiltonian techniques.136 This goes beyond the 
scope of the present calculations. 

•ffext represents the interaction between the n electrons and 
an external electric field S(t), polarized along the chain z axis. 
Within the dipole approximation we have 

Htn=-£(t)<S 

where <& is the polarization operator 

&= -e^z{n)Q°m 

(6) 

(7) 

and z(n) is the z coordinate of the nth atom. 

The one-electron density matrix element Qa„Jf) = (g°m) (i.e., 
the expectation value of Q°nn) obeys the exact Heisenberg 

(36) Martin, C. H.; Freed, K. F. J. Chem. Phys. 1994, 101, 4011. 
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equation of motion, 

^L(O = 5 > X . « -timQ°ni(t)] + 
i 

ten 

ui0mTnm) - (GOD] + a/2)Xv„,-«^i> + 
tern 

WJfn)) - (l/2)Xvm,«^l> + < ^ » + 
i,<f 

t[z(n)-z(m)}£(t)Q°Jt) (8) 

Assuming that the wave function may be represented by a single 
Slater determinant at all times results in the Hartree—Fock 
factorization,37 

< M > = QL(t) Qy (f) ~ d^QKt) Q^t) + d^j^t) 
(9) 

Combining eqs 8 and 9 yields the following closed nonlinear 
self-consistent equation of motion for the one-electron density 
matrix Q°(t): 

ihpa(t) = [h°(t) + f(r), Qa(t)] 

where ha and f are N x N matrices, 

(10) 

KJf) = Km + < 5 „ , m I v r f u W - VnmQ°Jt) (11) 

and 

]jt) = 8n<mez(n)S(t) (12) 

In the remainder of this paper, we shall consider only spin 
symmetric (singlet) excitations, and thus omit the spin index. 
We partition the density matrix into two components: 

e{t) = Qw + dg(t) (13) 

where g(0) is the one-electron density matrix representing the 
Hartree—Fock ground state and 8g(t) is induced by the driving 
field. Similarly, the Fock operator h is decomposed in the form 

h(f) = h w + (5h(f) (14) 

where 

, (0) 
kll = fnm + 2^n.mLVnda ~ KmQn' 

I 

dhjt) = 25n^v JQ11(I) - vnm8QJt) (15) 

We next show that the equations of motion map the electronic 
system onto a collection of anharmonic oscillators. To that end, 
we follow ref 6 and adopt Liouville space notation.38,39 We 
rewrite dp as an N2 vector instead of an N x N matrix, and 
thus introduce a new vector space, denoted Liouville space. In 
Liouville space, ordinary operators are viewed as M-dimensional 
vectors (M = N2, N being the number of basis states). After 

(37) Ring, P.; Schuck, P. The Nuclear Many-Body Problem; Springer: 
New York, 1980. 
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some algebraic manipulation, eq 10 becomes 

ihdg -Jfdg = [f, gm] + [f, dg] + [(Sh, dg\ (16) 

(0 ) . 
4.™(<») = &jAn ~ 8i,mhjn + ^mMn ~ Vjn)Q1 

,(0) 

<5- v. o u , + <5. v. ow (17) 

where Jfi is an M x M matrix which is an operator in 
Liouville space (also denoted superoperator or tetradic operator), 
Sg on the left side is an M-dimensional vector, and all terms 
on the right side are regarded as Af-dimensional vectors. Formal 
manipulations in Liouville space become more transparent by 
introducing the following notation. An ordinary operator A 
(which is a vector in Liouville space) is represented by a double 
bracket ket | A)),39 a scalar product of two vectors is defined as 
((BI A)) = Tr(B+A), and a matrix element of a superoperator^ 
is ((BUfA)) = Tr(BtS-A). 

We next introduce a harmonic oscillator (HO) representa
tion630 by using the Liouville space eigenvectors \xpv)) of the 
homogeneous equation 

4flVv» = ft«vlVv» (18) 

as a basis set, where Qv are the corresponding eigenvalues. The 
eigenvectors \xpv)) are defined by an M x M transformation 
matrix 1fx from the real space site (SITE) representation, i.e., 

W) = X O o (19) 

where \e„m)) = a*an is a basis vector in the SITE representa
tion of Liouville space. Both \e„m)) and \rpv) form a complete 
basis set in Liouville space, and we have 

XlOX(U = Sl̂ v)X(VvI = i (20) 
nm v 

We denote the component of \dg>)) along \ipv)) by 6QV, i.e. 

l«fc» = 2>vlVv» (2D 
V 

with 6QV = {{ipv\dg)) = Tr[Vv <5p]. Thus, the transformation 
between the SITE and HO representations is 

<5£,v = X^v,™< 5^ (22) 

with 9-frx<U=\. In Appendix A, we transform the equation of 
motion (EOM) (eq 17) to the HO representation, and obtain 

ihdQv - hQv6Qv - <§EV = ( ? 5 X , dQv, + 
v' 

.^(Jvy^ + Kvy^)dQ„6Q^ (23) 
v',v" 

Ev denotes the driving force induced by the external field, Fvy 
represents a nonlinear coupling with the external field, Jvyv" is 
related to direct Coulomb interaction, and Kvyv represents 
exchange Coulomb interaction. These coefficients are defined 
in Appendix A. If we neglect all terms on the right hand side, 
these equations become linear, 6QV will be proportional to <S, 
and all nonlinear polarizabilities /3, y, etc. vanish. The nonlinear 
response is thus induced by the field (F), the Coulomb (J) and 
exchange (K) anharmonic couplings. An important feature of 
the present formulation is that it makes it possible to investigate 
separately the contributions of various sources of nonlinearity. 

It is further shown in Appendix A that for every eigenvector 
IVv)) with nonzero eigenvalue Qv (^O), there exists a conjugate 
eigenvector IVv)) with eigenvalue Qv = —Qv- Using the 
freedom we have in the choice of the relative phase of \ipv)) 
and IVv)), we take 

Vv = Vv (24) 

i.e., (Vv)«m = (Vv)L ^ d ®v — ~lxv - °- Making use of this 
symmetry, we introduce a new pair of operators 

IGv)) = -
IVv)) + IVv)) 

IO) = ~i-

S. 

IVv)) - IVv)) 

V2 

(25) 

(26) 

whose expectation values are 

Gv = 

P„ = ~i-

6QV + 6Q-V 

4~2 

(27) 

(28) 

For zero frequency modes, Q^ = 0, the corresponding coordi
nates are 

Qv = dQv^2 

Pv = 0 

As shown in Appendix A, eq 23 then transforms to the following 
form: 

Gv - &vPv = Jpb
vyPv<S+ YsKvV + t,vv)QvPv 

(29) 

Pv + QvQv - Ev£ = -YPvyQvxS ~ 
v' 

X(C v y v - + Kw)QvQv" + 2 X w PvPv (30) 

Qv and Pv represent the coordinate and the momentum, 
respectively, of a harmonic oscillator with frequency Qv. Ev 

represents linear coupling to the driving field. The terms on 
the right hand side of eqs 29 and 30 control the nonlinear 
dynamics of the system. Neglecting these nonlinear terms, eqs 
29 and 30 can be combined to yield the equation of motion of 
a linearly driven harmonic oscillator24 

Qv + QV
2QV = Q&S (31) 

As in eq 23 we can classify the nonlinearities into three 
groups: Dvv, (s = a, b), representing the nonlinear coupling 
between the external field and the oscillators, CjiIluV. (q = a, 
b), are anharmonic couplings among oscillators due to direct 
Coulomb interaction, and K.vV (r = a> *>> c> <*), denoting 
anharmonic couplings due to exchange interaction. All of these 
coefficients are defined in Appendix A. 
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The oscillator picture can also be formulated in real space. 
To that end, we introduce the following pairs of operators: 

'2^" Ti— 

1̂ ,» = -* 
J V> - 1 V> 

~7i 
(32) 

The corresponding expectation values are 

_ 66ij + 6Qj, 
Q»- 72 

_ SQ1J-SQ1 

P«-~l V2 (33) 

The EOM (eq 17) then becomes 

5 > * - V^Ctt^tf - Qufkj ~ PikQkj) (34) 

k 

m<n m 

2Qn-Ij)Qf =-Q11-Jj1)Q1J-
5 > t t - v„x2e t t^ - e,,et;.+pikpkj) 05) 

Equations 34 and 35 are identical to eqs 29 and 30, but written 
in a different representation. 

Equations 29 and 30 have several interesting features: (1) 
The system is mapped onto a collection of N(N + l)/2 coupled 
oscillators representing electronic normal modes. (2) Examina
tion of C2„„v., )CV,„-„<•, and D]y should reveal how various 
oscillators couple and contribute to the total polarization. This 
should also clarify how the three types of nonlinearities 
contribute to the hyperpolarizabilities and allow us to analyze 
their effects separately. In contrast, in the sum over states 
formulation, the analysis is made in terms of the molecular 
eigenvalues and their dipole matrix elements. (3) The dipole 
moment dv associated with the \QV)) oscillator is given by 

dv = ((mv)) = ~272e^z(m) %^v (36) 

where -2?is the polarization operator given in eq 7. We choose 
the overall phase of \QV)) such that the dipole moment dx is 
non-negative. It follows from eq 24 that the momentum |PV)) 
has a vanishing dipole moment. Thus, the polarization operator 
defined in eq 7 depends only on the coordinates Qv but not on 
the momenta Pv and is given by 

&= IXa 
V 

The nth order polarizability %n is given by 

Z11 = S X G S 0 / ^ 

(37) 

(38) 

where %\ = a, %i — P, Xi = Y< an^ fit"' is the nth order of Qv 
in the external field S. (4) The system has N zero frequency 
(Qf1 ~ 0) modes (ZFM) (see Appendix B). For these modes, 

Q^ = 0, Pf1 = 0, and 

2,(0 = JPlyP^S + X< v V ' + <vvWV 09) 
V Vv" 

It follows from this equation that these modes do not contribute 
to the linear polarizability since the terms on the right hand 
side are all nonlinear. Thus, Q(f = 0. When eq 39 is 
transformed to the frequency domain, both the left hand side 
and right hand side are proportional to <w as w —- 0 (see eq 
A16). Therefore, Qf and Qf are finite as w — 0, and these 
modes contribute to /3(0) and y(0). 

Following ref 31, we can define the oscillator strength fv of 
the vth harmonic oscillator, which is a measure of its contribu
tion to the linear polarizability a. Starting with the linearized 
EOM (eq 31), and multiplying it by the dipole moment dv of 
the IQv)), we obtain the equation of a driven oscillator for the 
polarization,24 i.e., 

i% = -Qv
2<4+/vf-<? 

IJIr, 

(40) 

where <£„ = dvQv and the oscillator strength /v is defined as 

fv = X^(m'") 

fv(m,n) s 4(msJh)Qv^z(l)[z(m) ~ z(n)] ^ X m „ 0 ™ 
i 

=V2(mo/fV)Q A %^[z(n) - z(m)]eZ (41) 

fv(m,n) is the oscillator strength density,31 and TWO is an effective 
mass which can be determined by imposing the Thomas— 
Reiche—Kuhn sum rule,40 

If. = N (42) 

Using eq 40, the linear polarizability a(co) assumes the Drude 
oscillator form 

alto) = IX„(ft>) = —£• 
/ v 

(43) 
wo v Q,/ - o / 

with 

u«)=—X 
<?-„ />»>" ) 

«o v Q 2 - a)2 
(44) 

III. Electronic Properties of the Ground State 

In this section we calculate some basic properties of the 
system including the charge distributions, the bond order,41 the 
bond order alternation, and the lowest absorption peak frequency 
Qo- These are important for interpreting the optical properties 
of conjugated polymers. In the next section we calculate the 
off-resonant polarizabilities a(0), /3(0), and y(0), and investigate 
their correlation with the equilibrium properties of the molecule. 

The ground state charge distribution is 

40) - 1 - 2c; 
(0) (45) 

Here g{0) is the density matrix for the Hartree—Fock ground 
state and n is the site index. 

(40) Bethe, H. A.; Salpeter, E. E. Quantum Mechanics of One- and Two-
electron Atoms; Plenum: New York, 1977. 

(41) Coulson, C. A. Proc. R. Soc. London 1939, A169, 413. 
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Figure 2. Donor ground state charge Qo vs €D and e,\. QD is primarily determined by ^D and is insensitive to €A. 

The bond order of the n bond between sites n and n + 1 is 
related to the off-diagonal element of the ground state reduced 
density matrix,41 and is defined as (Qn

0)„+i + Qn°lUn)/2. The 
average bond order pm is defined as 

1 
EfeSUi +*£,„> (46) -pa)) -

2(N- I ) T 

The staggered bond order measures the alternating nature of 
chemical bonds in conjugated systems, 

The (— 1)""' factor eliminates a change in sign on the right hand 
side due to alternation, and makes pn

m smooth. The average 
bond order alternation (BOA) is an important parameter in 
chemical bonding, 

— /JO) JO) BOA^Jl1-O 
1 

N - 4,=2, 
I ( e ,+^ , + 3-2^ , , + 2 ) (48) 
4 A/-4 

The superscript in all quantities represents the order with 
respect to the driving field, and zero order implies ground 
state properties. In the next section we consider quantities in 
kth order and analyze the optical response. The induced charge 
distribution to kth order in the field (k = 1, 2, 3), which is 
intimately related to the polarization, is 

J»m-2e (*) 
nil (49) 

We consider an eight-site (N = 8) substituted system made 
of a six carbon atom (hexatriene) bridge, a donor and an acceptor 
group at each end, and eight electrons. For comparison we also 
perform calculations for the unsubstituted isoelectronic octatet-
raene system.42 By tuning to and 6A, we can change the 
geometry, bond order, and charge distribution of the system. 
We calculated the average bond order />(0), staggered bond order 
Pn , BOA, charge distribution ctn \ and optical frequency Qo. 

(42) Buma. W. J.; Kohler, B. E.; Shaler. T. A. J. Chem. Phys. 1992. 96. 
399. 

In all calculations, geometries are optimized within the Hartree-
Fock approximation.23 

Risser, Beratan, and Marder9 employed a four-orbital Hiickel 
model to describe a push—pull conjugated polymer (two bridge 
orbitals, one donor, and one acceptor). By exploring a wide 
range of parameters, they discussed the optimization of the 
magnitude of the off-resonant first hyperpolarizability (3(0). The 
following calculations differ from that study in the following 
respects. First, we include Coulomb interactions among elec
trons and nuclei as well as geometry optimization. Second, we 
also study the second hyperpolarizability y. And third, we recast 
our results in terms of the electronic oscillator picture rather 
than the conventional eigenvalues and matrix elements of the 
dipole operator. 

To illustrate the onset of charge transfer, we plot the charge 
at the donor site Qu for different values of 6D and €\ in Figure 
2. QQ is primarily controlled by eo- This is because 6D 
determines the energies of the donor electrons relative to the 
bridge. When eo is low, it is energetically favorable for 
electrons to remain at the donor site. As eo is increased, the 
donor electrons move to the bridge since this is energetically 
more favorable. When €o is negative and large, i.e., the energy 
of the donor site is very low, Qu «s O and there is no electron 
transfer from the donor to the bridge or to the acceptor. At to 
% 2—4 eV, about one electron transfers from the donor to the 
bridge and acceptor. When the donor site energy is very high, 
both electrons transfer. For instance, at ^D = 12 eV, Q0 % 
1.9e. In Figure 3, we show the charge at the acceptor site (2A-
It has characteristics similar to those of Q0. It depends primarily 
on €A and shows only a weak dependence on eo, since ^A 
controls the energies of electrons at the acceptor. At its large 
positive and negative values, Q\ is close to O and — 2e, 
respectively. At eA = ~~6 to —4 eV, QA % \e. In Figure 4, we 
plot Qo for different values of eo and ^A- AS charge transfer 
takes place, the electronic excitation energy is lowered, and the 
optical transition is red shifted. Around (€o,€\) = (3.0,-2.0) 
eV, Q0 reaches its minimum value, ~2.6 eV. In this region 
QD % O.le and £>A % 0.8e; i.e., less than one electron transfers 
from the donor to the acceptor. 

In Figure 5, we display the BOA vs €Q and ^A- At low eo 
and high €\, the BOA «s 0.3 is large and positive. This implies 
bonding structure A in Figure 1. At high eD and low €A, BOA 
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Fig. 3 

Figure 3. Acceptor ground state charge QA vs eo and eA. 2A is primarily determined by the value of eA and is insensitive to eo-

Figure 4. Frequency of the lowest absorption peak Qo vs ec and eA. The minimum frequency is obtained for (eD, tA) = (2, -2) eV. 

« —0.3 is large and negative, which reflects the reverse bonding 
structure C or D (Figure 1). When BOA is close to zero, the 
structure is close to B, the cyanine limit. This classification 
has been suggested in ref 8. 

In Figure 6 we display QD, QA, BOA, and Qo for eD = ~€A-
The optical transition frequency Qo attains its minimal value 
(maximum red shift) at eo = 2.625 eV where Qu = 0.7e and 
QA = —0.8e. The BOA vanishes at a slightly different point 
(€D = 2 eV). On the basis of an independent electron picture, 
we might expect Qo to be minimal when the BOA vanishes. 
However, electron—electron correlations and geometry changes 
are responsible for the difference. We shall focus our subse
quent analysis on the following points: €D = — (A — —6.0, 2.0, 
2.25, 3.625, 4.375, and 10.0 eV. These will be denoted points 
E, F, G, H, I, and J, respectively. These points will be examined 
in the following figures and tables. 

In Figure 7, we plot the average bond order p(0) vs €D for CD 
= —6A- It peaks at point G, where BOA is approximately zero. 
In Figure 8, we plot the staggered bond order p^ for points E, 
F, G, H, I, and J. At E, pf « -0.3. This corresponds to 
structure A in Figure 1. At F and G, pf} is close to zero which 
implies that electrons are delocalized along the chain [structure 
B]. At H, I, and J, p„ is positive, which means a bonding 
structure of forms C and D. In Figure 9, we plot the charge 
distribution cf°} for the same values of €u and 6A used in Figure 
8. The charge transferred from donor to acceptor increases with 
the D-A strength. At E, a very small charge is transferred, at 
H and I, approximately one electron is transferred, and at J, 
almost two electrons transfer. The bonding structure corre
sponding to points H and I is similar to C while the structure 
corresponding to point J is close to D. 



4952 /. Am. Chem. Soc, Vol 117, No. 17, 1995 Chen and Mukamel 

Fig. 5 

Figure 5. Bond order alternation (BOA) vs «D and eA. Positive, zero, and negative BOAs correspond to structures A, B, and C or D of Figure 1, 
respectively. 
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Figure 6. Ground state properties for sD = — eA: (a) frequency of the 
lowest absorption peak Q0; (b) bond order alternation (BOA) which 
vanishes at point F; (c) charges on the donor and acceptor Q0 and Q\. 
Points E, F, G, H, I, and J stand for «D = -«A = -6.0, 2.0, 2.25, 
3.625, 4.375, and 10.0 eV, respectively. 

IV. Off-Resonant Polarizabilities of Substituted 
Hexatriene 

We now present the off-resonant polarizabilities a(0), /3(0), 
and y(0) at different values of ep and €A, correlate their 

eD (eV) 

Figure 7. Average bond order p(0) vs eo for 6D = _«A. p<0) peaks 
around point G. 

magnitudes with the induced charge distributions at each order, 
and investigate their relationships with the ground state proper
ties: QD, QA, BOA and Q0. 

In Figure 10, we plot a(0) vs eo and €A- There is one peak 
at point G where the BOA is close to zero, the frequency Qo is 
near its minimum, and about half an electron transfers from 
donor to acceptor. In Figure 11, we plot /3(0) vs €D and €A- It 
has one large positive peak around point H and one negative 
peak around e^ = €A = 0. In Figure 12, we plot y(0) vs er> 
and €A- There are two positive peaks, a larger one at point I 
and a smaller one around (0, 0), and a negative peak around 
point F. 

In Figure 13 we plot a(0), 0(0), and y(0) for eD = - e A = 
— 16 to +16 eV. a(0) is maximized at G, and /3(0) reaches its 
maximum at H and minimum at 0.75 eV and vanishes around 
F. y(0) has a maximum at I and minimum at F, and is zero at 
3.0 eV. For comparison, we calculated a(0), 0(0), and y(0) 
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Figure 8. Staggered bond order pf} for points E, G, H, I, and J. E 
corresponds to structure A in Figure 1, F and G correspond to B, and 
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Figure 9. Charge distribution in the ground state d® for points E, F, 
G, H, I, and J. The charges at the donor and acceptor increase 
monotonically with increased donor—acceptor strength. 

for octatetraene, and the results are given by the arrows in Figure 
13. We found a(0) = 2.614 x 1O-22 esu which is less than 
half of the maximum a(0) value, /3(0) = 0, and y(0) = 0.3312 
x 1O-33 esu which is about one-fifth of the maximum value of 

Y(O) for the substituted hexatriene. These illustrate how donor 
and acceptor substitutions can increase the hyperpolarizabilities.9 

In Figure 14, we show various characteristics of points E, F, 
G, H, I, and J. To explain the variation of a(0), we plot the 
first-order induced charge distribution cf^ in the bottom panel. 
We find that at E and J the induced charges at the donor and 
acceptor are small while at F, G, H, and I these charges are 
large. At F and G, the induced charges on the bridge are small. 
At H and I, these charges are moderate, but the corresponding 
induced dipole moments cancel, and the net dipole moment is 
opposite that from the donor and acceptor. At E and J, the 
induced dipole moments on the bridge cancel when added, and 
this leads to a small first-order polarization. Combining the 
contributions to the polarization from the donor—acceptor 
system and the bridge, we can rationalize why Ct(O) peaks around 
F and G. 

To analyze the behavior of /3(0), we plot the second-order 
induced charge distribution dj,2) in the middle panel. At E and 
J, these charges are small at both the bridge and the donor-
acceptor, and this leads to /3(0) « 0 . At F and G, the second-
order induced charges are small at the donor and the acceptor 
but quite large at the bridge. However, the corresponding dipole 
moments at the bridge cancel when added, and this leads to a 
near zero /3(0). At H and I, the induced charges are large at 
both bridge and donor—acceptor, which leads to large values 
of/3(0). 

We next turn to y(0), and consider the third-order induced 
charge distribution dj,3) shown in the top panel. At E and J, the 
third-order induced charges at both the bridge and the donor-
acceptor are small, leading to a small y(0). At F and G, the 
induced charge is large at the donor and acceptor but small at 
the bridge. At I, the induced charge is large at both the bridge 
and donor—acceptor, which leads to a maximum value of y(0). 

In order to use these results for developing a structure-
polarization relationship, let us consider the following argument: 
Consider a conjugated polyene subjected to an external electric 
field ĉ ext along the chain, and plot a(0), /3(0), and y(0) vs the 
field: it then follows directly from their definitions that these 

Fig. 10 

Figure 10. a(0) (IO"22 esu) vs eD and «A. «D = -16 to +16 eV, and eA = -16 to +16 eV. There is only one peak, around point G. 
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Figure 11. /J(O) (10 28 esu) vs «D and 6A- There are one positive peak and one negative peak located at point H and (—0.5, 0.5). /8(0) vanishes 
around point F. 

Figure 12. y(0) (10 33 esu) vs «D and 6A. There are two positive peaks, located at point I (large peak) and around (0, 0). A negative peak is 
around point F. 

quantities are related by simple derivatives, 

da(0;c?ext) 
P(O-AJ = - dS„ 

Y(O-AJ = dc?„v, 
(50) 

Assuming the effects of the donor and acceptor (or a solvent) 
can be approximated by an effective electric field along the 
chain, and that the BOA depends linearly on the field, we may 
expect a simple derivative relation among a(0), /3(0), and y(0) 
when plotted vs the BOA. To test this conjecture, we plot a-
(0), /3(0), and y(0) vs BOA in Figure 15. Near zero BOA, Ot-(O) 
has a maximum, /3(0) is close to zero, and y(0) reaches its 

minimum. Thus, in the vicinity of zero BOA the derivative 
relationship holds approximately. However, this is not the case 
in general. For instance, /3(0) has a positive peak at BOA « 
—0.2 and a negative peak at BOA ss 0.15, whereas the derivative 
of a(0) with respect to BOA does not show any peak at all. 
We thus conclude that the derivative relationship among a(0), 
/3(0), and y(0) holds only over a limited range of parameters. 
Marder and co-workers investigated a series of conjugated 
systems and used different polar solvents to modify their BOA.8 

They measured the off-resonant hyperpolarizabilities /3 and y 
and found that with the change of BOA the values of /3(0) go 
through a positive peak, zero, and then a negative peak while 
y(0) goes from a positive peak to a negative peak and then to 
another positive peak. Our calculations are consistent with these 
observations. 
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An important feature of the coupled-oscillator picture is that 
it allows us to discuss separately the roles of the three 

BOA 
Figure 15. Off-resonant polarizabilities a(0), /3(0), and y(0) vs the 
bond order alternation (BOA). 

Table 1. Sources of Nonlinearity for /3(0) and y(0) (10~28 and 
10~33 esu, respectively) 

point 

E 
G 
H 
I 
J 

X" 

0.169 
1.213 
1.569 
0.208 

-0.113 

C 

-0.166 
-2.427 
-4.343 
-2.288 

0.060 

D" 

-0.418 
3.474 

10.033 
8.291 

-0.069 

X" 

-0.016 
-0.451 

1.554 
1.496 
0.177 

C* 

-0.011 
0.205 

-3.180 
-2.730 

0.034 

Db 

0.137 
-0.712 

2.568 
2.677 

-0.002 

" For 0(0). " For y(Q). 
anharmonic contributions: the nonlinear coupling to the external 
field, Coulomb coupling, and exchange coupling. To that end, 
we have carried out the following calculations: (I) the complete 
calculation with all anharmonic couplings included, (II) calcula
tion that includes only the field and the Coulomb anharmonici-
ties while the exchange coupling (X) is switched off, and (III) 
calculation that only includes the field nonlinearity, and both 
Coulomb (Q and exchange (X) terms are switched off. In all 
three cases, the values of a(0) are the same since it is not 
affected by the anharmonicities. However, /3(0) and y(O) change 
significantly. For instance, comparing cases I and II for point 
G, the value of/3(0) decreases from 2.3 x 10~28 to 1.0 x 10 - 2 8 

esu, and y(0) changes from -0.96 x 10"33 to -0 .50 x 1O-33 

esu, about a factor of 2. This indicates that the exchange 
coupling contribution is very significant. 

In Table 1 we list contributions to /3(0) and y(0) from the 
three sources of anharmonic coupling. The exchange contribu
tion, denoted X is the difference between (I) and (II). The 
Coulomb contribution, denoted C, is the difference between (II) 
and (III). The field contribution is denoted D and is given by 
(III). The total polarizability is the sum X + C + D. We list 
the values of X, C, and D for points E, G, H, I, and J. We find 
that X, C, and D are comparable and none can be neglected. 

V. Dominant Oscillator Analysis 

We have investigated the character of the harmonic oscilla
tors. In Table 2 we list the frequencies Qv, dipole moments 
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Table 2. Properties 

Qv 
dv 

fv 

Qv 
dv 

fv 

Qv 
dv 

fv 

Qv 
d„ 
fv 

Qv 
dv 

fv 

1 

0 
1.840 
0 

9 

1.247 
0.376 
0 

17 

7.153 
0.565 
0 

25 

6.250 
0.286 
0.065 

33 

10.840 
0.048 
0.003 

2 

0 
0.889 
0 

10 

3.086 
1.825 
0 

18 

2.174 
1.699 
0 

26 

6.721 
0.077 
0.005 

34 

11.722 
0.007 
0.000 

of the Electronic Harmonic Oscillators" 

3 

0 
0.155 
0 

11 

5.212 
0.271 
0 

19 

4.860 
0.629 
0 

27 

6.787 
0.205 
0.036 

35 

13.099 
0.008 
0.000 

4 

0 
0.369 
0 

12 

1.840 
0.287 
0 

20 

2.686 
4.855 
0 

28 

7.989 
0.227 
0.052 

36 

15.439 
0.004 
0.000 

5 

0 
1.610 
0 

13 

3.965 
1.012 
0 

21 

2.650 
4.670 
7.419 

29 

8.560 
0.292 
0.091 

6 

0 
0.994 
0 

14 

2.126 
0.688 
0 

22 

4.533 
0.280 
0.046 

30 

8.712 
0.084 
0.008 

7 

0 
0.364 
0 

15 

2.293 
1.941 
0 

23 

4.648 
0.472 
0.130 

31 

9.100 
0.037 
0.002 

8 

0 
1.247 
0 

16 

4.467 
0.126 
0 

24 

5.920 
0.432 
0.141 

32 

10.130 
0.041 
0.002 

" Qv is in units of eV and dv is in units of e-A. 

dv, and oscillator strengths fv of the electronic normal modes at 
point G. Note that the oscillator strengths fv for the first 20 
oscillators vanish, which is why these modes do not participate 
in linear optical process. The dipole moments dv are finite for 
all oscillators. There are eight degenerate zero frequency modes 
and we have some freedom to construct them. 

We shall now analyze our results using the oscillator picture.6 

In Figure 16, we display the oscillator strengths fv vs frequencies 
Qv at points E, F, G, H, I, and J. In each panel, we also give 
the resulting effective mass wo (in units of the electron mass),31 

which is about twice the electron mass in all cases. Note that 
most oscillator strength accumulates in a single mode, which 
is consistent with the behavior of unsubstituted polyenes.31 This 
mode is denoted the absorption mode (AM), and its frequency 
is the absorption peak frequency Qo. Mode 21 in Table 2 is 
the AM. 

We next analyze the contribution of the various HO modes 
to the polarizabilities. We denote the contributions of the vth 
HO mode to a(0), /3(0), and y(0) as av, /3V, and yv, respectively. 
Thus, we have a = Xva.v, /? = £v/3v, and yv = £ vyv The 
contribution of the vth mode to the nth order polarizability is 
equal to dvQ

(
v
n\ so that 

av = dvQ
(? 

Pv = dvQ? 

Yv = dvQ\ v«-v 

(51) 

(52) 

(53) 

In Figure 17 we plot av vs Qv. There is primarily only one 
harmonic oscillator (HO) mode (i.e., the AM) contributing to 
(X(O). At F and G, the AM's contribution to a(0) is the largest. 
This correlates well with the fact that a(0) attains its maximum 
around F and G. 

In Figure 18 we plot /3V vs Q„. Here modes other than the 
AM contribute as well, especially a zero frequency mode (ZFM). 
At points E, F, G, and J, other modes have comparable 
contributions to those of AM and ZFM. However, these 

Table 3. Index of Hartree-Fock Molecular Orbitals (HFMO) (m 
= N/2) 

HFMO no. configuration" HFMO no. configuration" 

1 
2 

(Pi. hi) 
(Pi, h2) 

m2+ 1 
m2 + 2 

(hi, pi) 
(h2, Pl) 

(Pm, hm) 2m2 (hm, pm) 

2m 2 + 1 
2m 2 + 2 

3m2 — m 

Am2 - 2m + 1 
4m2 - 2m + 2 

(hi,h2) 
(h,,h3) 

(hm, hm-,) 

(hi,h,) 
(h2, h2) 

3m2 - m + 1 
3m2 — m + 2 

2m(2m - 1) 

4m2 - m + 1 
4m2 - m + 2 

(Pl- P2) 
(Pi-Ps) 

(Pm- Pm-

(Pl-Pl) 
(P2, P2) 

4 m 2 - (hm, hm) N2 
(Pm, Pm) 

" (q, r) = aq aT where q, r = p,, h, and i, j = 1, 2, 3, 4. 

contributions are small compared to AM's and ZFM's contribu
tions of points H and I. Thus, effectively only the AM and 
ZFM make a significant contribution to /3(0) at all points. This 
greatly simplifies the physical picture of/3(0). At H and I, AM 
and ZFM have large contributions. 

In Figure 19 we plot yv vs Q1,. Many modes make small 
contributions to y(0) at E and J. At F and G there are four 
significant oscillators: AM, ZFM, a third mode (TM), and a 
fourth mode (FM). Mode 15 and mode 14 in Table 2 are TM 
and FM, respectively. At H and I, there is a large contribution 
from the ZFM. This leads to a maximum value of y(0). 
Another interesting observation is that the ZFM's contribution 
is positive at all points. The negative values at F and G come 
from AM, TM, and FM, and these lead to a minimum at F where 
the BOA vanishes. 

We next introduce the Hartree—Fock molecular orbital 
(HFMO) representation. Details can be found in Appendix B 
and Table 3. The basis vector in HFMO is 

l^kk'» = «kX (54) 

where a£ (ak') is an electron creation (annihilation) operator 
ofthe Hartree-Fock molecular orbital k (k') in the absence of 
external field <S. We denote it (k, k') (see Table 3). So far we 
constructed our oscillators using two representations: the normal 
mode [eq 18] and real space [eq 32]. It is also possible to define 
oscillators corresponding to the Hartree-Fock molecular orbital 
basis set, denoted as the Hartree-Fock oscillator (HFO) 

1 

V2k<k' 
(55) 

where Sv^ is the expansion coefficient. We denote (a^ak- + 
a£ak)/\/2 as [k, k'] (see Table 4). To establish the connection 
with the traditional SOS method, we project the dominant modes 
onto the HFO representation. We chose point G where a(0) 
attains its maximum, /3(0) « 0, BOA «s 0, and Qo is close to 
its minimum. We projected the eigenfunctions of AM, ZFM, 
and TM onto the HFO representation (contributions from FM 
are usually smaller than those of TM, and thus we do not 
investigate them in detail). In Figure 20 we show the coefficient 
Sv.kk' v s HFO's index for AM, ZFM, and TM. There are eight 
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Figure 16. Oscillator strength vs frequencies for points E, F, G, H, I, and J. mo is the effective mass, and rae is the electron mass. 

zero-frequency oscillators. Because of this degeneracy, we have 
some freedom to lump all contributions to /3(0) or y(0) into a 
single radiative oscillator.43 This oscillator has more than one 
component in the HFO representation and therefore acquires a 
collective nature. This important observation illustrates the 

(43) Each zero frequency mode in Table 2 is chosen so that the majority 
of its components is a (p,p) or (h,h) mixed with small contributions from 
other components (h,p) and (p,h) (see Table 3 and Appendix B). 

ability of the HO picture to describe collective excitations. In 
principle, the ZFM eigenvector could be different in the second 
and third order. However, we found it to be very similar, and 
it is primarily made of [lulu] and [pipi] (Figure 20) excitation 
from LUMO-LUMO and HOMO-HOMO, respectively (p, 
represents LUMO and Iu for HOMO, Figure 21). We have 
plotted the ZFM constructed from the second-order solution. It 
remains to be seen how general this conclusion is. If so, this 
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Figure 17. av ((e-A2)/V) vs Qv for points E, F, G, H, I, and J. Since av is dominated by a single AM mode (see insets), we have set the mode 
off scale to show the contributions of the other modes. 

could provide a simple way to construct the ZFM. As shown 
in Figure 20, AM is made of [PiIi4], ZFM [ruru] and [pipi], 
and TM [piht] and [P1P2]. FM is found to be mainly a 
combination of [PiIi4] and [IUh3]. In Table 5 we list the 
dominant HFOs of AM, ZFM, and TM at points E, F, G, H, I, 
and J. The coefficients are the amplitudes of HFO modes, and 
[p, h'], [p, p'], and [h, h'] stands for the dominant HFO modes. 

The inverse participation ratio KV of a harmonic oscillation v 
is defined as 

Kv — ^ P v . k k ' l 
k,k' 

(56) 

where v is the index of the oscillator. KV is roughly equal to 
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the number of FTFOs contributing to the vfh oscillator, and we 
use it to characterize the distribution of harmonic oscillators in 
HFO. In Figure 22 we plot KV at points G, H, and I. KV of the 
ZFM is different in second and third order. However, we found 
that the difference is small in all cases: E, F, G, H, I, and J. In 
Figure 22 we plot ZFM's KV of the second order. AM is made 
primarily of one HFO. TM and ZFM are made of two HFOs, 
reflecting their collective nature. 

In Table 6 we list the dipole moment dv and the inverse 
participation ratio KV of the dominant modes AM, ZFM, and 
TM, as well as their contributions to a(0), P(O), and y(0). We 
also compare Qo with the HOMO—LUMO energy difference. 
Note that Qo is much smaller although the AM's eigenfunction 
is dominated by the transition between HOMO and LUMO. This 
red shift reflects the excitonic nature of the optical transition.31 

As shown in Appendix B, the diagonal element of the Liouville 
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operator in the Hartree—Fock molecular orbital (HFMO) 
representation is6 

-^h,Ph= £P ~ £h + v,Ph (57) 

and Vph.ph is the Coulomb attractive interaction of an exciton. 

VI. Summary and Discussion 

In this paper we applied the coupled-oscillator picture to study 
conjugated polyenes substituted by a donor and an acceptor. 
We explored the relationships between the magnitudes of 
polarizabilities [a(0)( /3(0), and y(0)] and various other proper
ties: BOA, charge transfer and absorption peak frequency Qo. 
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Table 4. Index of Hartree-Fock Oscillator (HFO) 

HFO no. 

16 

23 
24 

configuration" HFO no. 

[pih,] 
[pih2] 

[P4Iu] 

[PlP2] 
[PlP3] 

17 
18 

22 

29 
30 

configuration" 

[h,h2] 
[h,h2] 

Lh3Ii4] 

[h,h,] 
[h2h2] 
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P1 

P3 

P2 

P1 

h< 

28 

33 
34 

36 

[P3p4] 

[p.p31] 
[p2p2] 

[P4P4] 

32 [IUh4] 

" [q, r] = (l/*/2)(atat + a*a) where q, r = ph h,- and i,j = 1, 2, 3, 
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Figure 20. Projection of AM, ZFM, and TM onto HFO at point G. 
HFO stands for Hartree—Fock oscillators which are listed in Table 4. 
AM is made primarily of [P1Iu]- ZFM is made mainly of [H4Iu] and 
[pipi]. TM is made of [pih4] and [pip2]. 

Clear correlations among these parameters have been estab
lished. When BOA « 0, Qo is near its minimum and the value 
of a(0) is near its maximum. At BOA = 0, the Tt bonds are 
delocalized, and this helps electrons polarize along the entire 
chain, as seen in Figure 14. This maximizes the polarizability 
a(0). At this point, about half an electron transfers from donor 
to acceptor. 

Strong variations of B(O) and y(0) were also found. /9(0) 
goes through zero at BOA «* 0, and has one positive peak and 
one negative peak in the vicinity of that point. At large negative 
values of ^D, there is a small peak along the €\ axis (at €A * 

hi 

Figure 21. Hartree Fock levels of an N = 8 site system in particle-
hole representation, p stands for particle and h for hole. 

Table 5. Eigenfunctions of AM, ZFM, and TM 

mode point 1 2 3 

AM 

ZFM0 

TM 

E 
G 
H 
I 
J 
E 
G 
H 
I 
J 
E 
G 
H 
I 
J 

0.6972[P1Ii4] 
0.6867[P)Ii4] 
0.6796[p,rM] 
0.6734[PiIi4] 
0.6957[P1Ii4] 
0.6820[Ji4Ii4] 
0.6869[1Uh4] 
0.6940[1Uh4] 
0.7046[1Uh4] 
0.6940[p,p,] 
0.6390[p,p2] 
0.5967Ip1Iu] 
0.4814[p,p2] 
0.5745[p,p2] 
0.6844[p,p2] 

0.1099[p2h3] 
0.1483[p2h3] 
0.1128[p2h3] 
0.1349[p,h3] 
0.0905[p2h3] 
0.6820[piPl] 
0.6785[p,p,] 
0.661[PiP1] 
0.6522[p,Pl] 
0.692[1Uh4] 
0.2815[PIh4] 
0.3375[p,p2] 
0.4763[P1Iu] 
0.3519[pilu] 
0.1485[pilu] 

0.0315[p3h2] 
0.0463[p3h2] 
0.1028[pih3] 
0.1119[P2Iu] 
0.0686[p3h3] 
0.1225[P2Iu] 
0.1175[P2Iu] 
0.1289[p2lu] 
0.1204[p2p2] 
0.0908[p,h3] 
0.1003[P3Iu] 
0.1235[p2h3] 
0.1459[p,h3] 
0.1565[p,h3] 
0.0773[p3lu] 

" Second-order solution. 

—6 eV). In this case the donor is decoupled from the rest of 
the system, and the system is effectively a hexatriene substituted 
with an acceptor at one end. The results of B(O) are consistent 
with those of ref 9. y(0) has also one large positive peak, one 
small positive peak, and one large negative peak. However, 
further increase of donor—acceptor strength results in the 
decrease of a(0), /3(0), and y(0). a(0) is maximized in the 
vicinity of zero BOA, where the n bonds are delocalized. B(O) 
and y(0) are maximized at finite values of BOA. All these 
provide some guidelines for optimizing the magnitudes of B(O) 
and y(0). Earlier experiments indicated that an increase of the 
push—pull strength over a limited range resulted in the increase 
of /3(O).44 Marder et al. measured the off resonant /uB and y of 
six compounds and used solvents of different polarities to 
modify their donor and acceptor strengths.8 Upon examining 
the variation of these quantities with the donor and acceptor 
strength, they found one positive peak and one negative peak 
for /tB and two positive peaks and one negative peak for y. In 
the vicinity of the cyanine limit, fiB vanishes and y attains a 
minimal value. Our results are consistent with these experi
mental observations. 

The electronic normal mode representation can differentiate 
between various sources of nonlinearities. We studied sepa
rately the roles of Coulomb (C), exchange (X) and field (D) 
nonlinear couplings and found that none is dominant. The 
ability to relate these couplings directly to the optical response 
(and not through the eigenstates) is a major advantage of the 
present picture. 

We also connected the coupled harmonic oscillator picture 
to the traditional SOS approach by projecting the harmonic 

(44) Oudar, J. L. J. Chem. Phys. 1977, 67, 446. 
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Figure 22. Inverse participation ratio KV vs v for points G, H, and I. v is the index of HO. ZFM corresponds to the second-order calculation. AM 
consists mainly of one HFO. TM and ZFM are made of two HFOs. 

oscillators onto the HFO representation and calculating the 
inverse participation ratio KV. This reveals the collective nature 
of the electronic oscillators. We investigated the character of 
the dominant oscillators and identified what molecular orbital 
transitions they represent. We found that four electronic 
oscillators, AM, ZFM, TM, and FM, contribute significantly to 
the off-resonant polarizabilities a(0), /3(0), and y(0). They 
represent transitions among the following molecular orbitals: 
Pi, p2, Iu, and h3, i.e., the first and second LUMO, and the first 
and second HOMO. It remains to be seen how this picture 
changes for the resonant response. 

Currently the coupled harmonic oscillator picture is based 
on the TDHF. Single ph/hp excitations have been accounted 

for explicitly. Further analysis reveals that double excitations 
have been partially taken into account as well.45 TDHF starts 
from the static Hartree—Fock ground state which does not 
include electron—electron correlations. A natural extension will 
be to start from a ground state which incorporates essential 
electron—electron correlations, and then to follow the motions 
of electron—hole pairs. The coupled-cluster equation of motion 
(CC-EOM)46-48 accomplishes this goal. Both the coupled 

(45) Bonacic-Koutecky, V.; Fantucci. P.; Koutecky, J. Chem. Rev. 1991, 
91, 1035. 

(46) Rowe, D. J. Rev. Mod. Phys. 1968, 40, 153. 
(47) (a) Shibuya, T.-I.; McKoy, V. Phys. Rev. A 1970, 2, 2208. (b) 

Shibuya, T.-I.; Rose, J.; McKoy, V. J. Chem. Phys. 1973, 58, 500. 
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Table 6. Characters of AM, ZFM, and TM 

mode 

AM 

ZFM" 

TM 

point 

E 

F 

G 

H 

I 

J 

E 
F 
G 
H 
I 
J 
E 
F 
G 
H 
I 
J 

/</(eV) 

4.4128 
(7.5742) 
2.6734 
(5.0931) 
2.6499 
(5.0456) 
2.7533 
(5.0680) 
2.9638 
(5.2953) 
4.2827 
(7.3720) 
0 
0 
0 
0 
0 
0 
2.4194 
2.3055 
2.2932 
2.1765 
2.0359 
1.5769 

rfv (e-A) 

3.2009 

4.6744 

4.6696 

3.9174 

3.8820 

3.2096 

0.8526 
0.3915 
0.9178 
3.7939 
4.9697 
0.2400 
2.9121 
1.8734 
1.9406 
0.1517 
1.6901 
3.4343 

Kv 

2.11 

2.24 

2.24 

2.34 

2.42 

2.13 

2.30 
2.25 
2.29 
2.35 
2.33 
2.17 
2.89 
3.58 
3.57 
4.74 
3.96 
2.27 

OV 

1.1718 

4.1776 

4.2072 

3.2700 

2.5730 

1.2172 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

PS 
-0.0690 

-0.0606 

0.1348 

1.0657 

1.1706 

-0.0431 

-0.0487 
0.1236 
0.2957 
0.9755 
0.9497 

-0.0145 
0.0020 
0.1216 
0.1793 

-0.0180 
-0.1585 
0.0135 

0.1435 

-0.4361 

-0.5142 

-0.0673 

0.3206 

0.0436 

0.0076 
0.0102 
0.0542 
0.7511 
0.8416 
0.0156 
0.0310 

-0.2260 
-0.2188 
-0.0011 
-0.0433 
0.0390 

" av is in units of 10 -22 esu, /?v is in units of 10"28 esu, and yv is in 
units of 1O-33 esu. * The wave function of ZFM is the second-order 
solution. c Data in parentheses are the energy differences between 
LUMO and HOMO, and those on the top are the frequency Qv for 
oscillator v. 

harmonic oscillator technique and the CC-EOM follow the 
motions of electron—hole pairs. Thus, it is straightforward to 
combine the two approaches. Another approach that goes 
beyond TDHF approximation was proposed by Linderberg and 
Ohrn,35 based on the work of Hubbard.49 It follows the motion 
of the electron propagator as well as some correlation functions, 
and thus includes electronic correlations. The Slave—Boson 
technique introduces some bosonic fields and connects them to 
specific electron—electron correlations.50 For the Hubbard 
model, its mean-field solution is found to be exactly that of the 
Gutzwiller approximation.51 Starting from the mean-field 
ground state and following the dynamics of the electron—hole 
pair as well as those of bosons, one can derive a set of coupled 
equations of motion for electrons and bosons.52 Further studies 
are necessary to determine the relevance of these approaches 
to optical processes of the conjugated systems. The one-
dimensional Hubbard model has been investigated extensively. 
It is the strong correlation limit of the PPP Hamiltonian. Its 
ground state has been solved by Lieb and Wu,53 and lately its 
full excitation spectrum has been obtained.54 These exact 
solutions of the ID Hubbard model can help clarify the 
correlated nature of the PPP Hamiltonian, and thus lead to a 
better understanding of the optical properties of conjugated 
polymers. 

In order to interpret the resonant spectroscopy of conjugated 
polyenes, we need to take nuclear motions into account. Apart 
from vibronic transitions, these induce large lattice distortions 

(48) Sekino, H.; Bartlett, R. J. Int. J. Quantum Chem., Quantum Chem. 
Symp. 1984, S18, 255. 

(49) (a) Hubbard, J. Proc. R. Soc. London 1963, A276, 238. (b) Hubbard, 
J. Proc. R. Soc. London 1967, A296, 100. 

(50) (a) Barnes, S. E. J. Phys. F 1976, 6, 1375. (b) Barnes, S. E. J. 
Phys. F 1977, 7, 2937. (c) Coleman, P. Phys. Rev. B 1984, 29, 3035. 

(51) Kotliar, G.; Ruckenstein, A. E. Phys. Rev. Lett. 1986, 57, 1362. 
(52) Chen, G.; Mukamel, S. Work in progress. 
(53) (a) Lieb, E.; Wu, F. Y. Phys. Rev. Lett. 1968, 20, 1445. (b) Yang, 

C. N. Phys. Rev. Lett. 1967, 19, 1315. 
(54) (a) Essler, F. H. L.; Korepin, V. E.; Schoutens, K. Phys. Rev. Lett. 

1991, 67, 3848. (b) Audit, P. J. Phys. A 1990, 23, L389. 

(soliton and polaron)55'56 as well as an inhomogeneous distribu
tion of configurations. We believe that the electronic oscillator 
method when combined with techniques such as the Car— 
Parrinello procedure57 is particularly suitable to address these 
issues. 
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Appendix A: Harmonic Oscillator Representation 

In this appendix we derive eqs 23, 29, and 30. From eq 17, 
we obtain the following symmetry relationship among the 
elements of matrix Jf: 

-vij.mn ~-%ix (Al) 

Assuming that an eigenvector of eq 18 \\pv)) = 
Sm„^v |e„m)) and its eigenvalue is hQv, we have the follow
ing equation: 

hQv %jv 2j%j,mn %nn,v ~ 0 (A2) 

Denoting &£j, = &0 and Qv = -Qp, and using eq Al, we 
have 

h&v%j,v + ZJl',nm%nn,v ~ 0 (A3) 

Thus, we find another eigenvector |t/>v» = 1mn%C,v\enJ), 
where 

?y1 = 9/~l 

c</mn,v oc/nm,v 
(A4) 

and its eigenvalue Qv = — Qv- Further we find that 

"^v,mn "•v, run \"^J 

Multipling eq 17 by z^from the left and using eq 22, we obtain 

ihdQv - hQvdgv = \f, Q(\ + \f, 6Q]V + [dh, dg]v (A6) 

Substituting 6gmn = Sv^jV<5£>v, we find 

(f, Q{\ = SEV 

L/, 6Q]V = SJf11^Q, 
v' 

[dh, dQ]„ = X^v.vV' + Kyyv-^Qs dQv-

where 

,(0) 
imn 

Ev = ^e[z(m) - z(n)] UvmnQl 
mn 

7 V = ^e[z(m) - z(n)] UVimn%^y 

(A7) 

(A8) 

(A9) 

(AlO) 

(All) 

KtS = X2<Vm* - Vnk) %,mn K* %n\s< (Al2) 

(55) Heeger, A. J.; Kivelson, S.; Schrieffer, J. R.; Su, W. P. Rev. Mod. 
Phys. 1988, 60, 781. 

(56) Hagler, T. W.; Heeger, A. J. Chem. Phys. Lett. 1992, 189, 333. 
(57) Car, R.; Parrinello, M. Phys. Rev. Lett. 1985, 55, 2471. 
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*vyy< = X t - 1 X ^ * - vnk)%,mn9Cy%l„ (A13) 
mn,k 

We thus obtain the EOM (eq 23) in the HO representation. 
The EOM for dgv can be written as 

ihd$-v = hQ-vdQ-v=lf,Q(\ + \f,dQ]-v + [dh,dQ]-v (A14) where 

Combining eqs A6 and A14, we obtain the EOM (eqs 29 and 
30) for Qv and Pv. The coefficients E, C, X, and D in eqs 29 
and 30 are 

(1) for Qv ^ 0 

Ev = - V ^ - 1 X b C m ) - Zn)] %,mnQ
(l 

D\y = h~l(Fvy + Fvy) 

Db , - h~l(F .-F-.) 

v^v,v'v" * v*v,v'v" v,v'v") 

W , v V \ ITl \JVV'V" ~~ Jvv>y") 

^v,v'v" = W 2IT)Ti (Kvv>v» + Kvyv» + Kvyv» + Kvyv») 

Ĉ1VV = (V 2/2)n (Kvyv>< + KvyV — Kvyy> + Kvy*tf + 

v,v'v" v,v"v' v,v'v" v,v"v'' 

-^CvV" = ( v 2 / 2 ) n (Kvyv» — Kvyv" ~ Kv,v'v" ~^~ ^v,v'v") 

( A 1 5 ) 

(2) for Q^ = 0 

lflly = {\rW-\F^-Flty) 

C^v~ = (V2/2)ft-V^v< + V*" ) 

Cj1VV = (V^)TT 1 (^,vv - 7„iVV-) 

•X̂ .vV = (v2/4)ft CK v̂V + K^vV. + K^.^. + K^y) 

Xfiiyv" = ("V 2/4)ft (K^y„» + K^yy — K^yy, + K^yy + 

Jf _ K- K K \ 
^p.v'v" " y i V v ' " y ^ v ' v " SVfX,v"v'f 

Xjl.v'v" = (v 2/4)ft {Kpyv.. — KMyy.. — K^y, + K^yy) 

(A16) 

Using the symmetry relationships A4 and A5, we obtain 

Pv(co) ~ a (A17) 

as (o —* 0. 

Appendix B: Hartree-Fock Molecular Orbital 
Representation 

In HFMO representation, eq 17 becomes6 

ihdg - Jpdg = [f „p(0)] + [f,dg] + [dh,dg] (B 1) 

Jf=WV 

^ik',mn CmkCnk' 

(B2) 

(B3) 

Cmk (Cmw) is the normalized HFMO coefficient of the HF orbital 
k (k') at atom m (n), and 

-%h,P-h' = (̂ p " eh)<5p,PA,h' + vph,p'h' (B4) 

-^h.h'p' = V.h'p ' ( B 5 ) 

-^h.h'h" = V.h'h" ( B 6 ) 

-<?h,p'p" = ^ph.p'p" ( B 7 ) 

-^p',p"p'" = -Xh',h"h'" = -^p'.hh' = 0 (B8) 

-^rti.p'h' = ~-^p,h'p' (B9) 

•*ph,h'p' - --S'p',ph (B 1°) 

-£ph,h'h" = --^P ,h"h ' (B 11) 

-^)h,P'p" = --Sp,p"p' (B 12) 

where 

v ,„ = ^ C21V , 1V„ ,, — <V 'V W 
Kkk',k"k ^ ^ kk ,mm k k ' ,nm kk',mn k"k"',mn/ *nm 

mn 
(B13) 

The labeling of the HFMO is shown in Figure 21. We 
arrange HFMO transitions in the following order: ph, hp, hh7 
h'h, pp'/p'p, hh/hh and pp/pp. In Figure 21 we plot the energy 
levels of Hartree—Fock molecular orbitals. p stands for the 
unoccupied orbitals and h stands for the occupied orbitals. In 
Table 3, we list the index of the Hartree—Fock molecular orbital 
transitions. Using this index J^ has the following form: 

lo' n2) 

B ) B - A / 

(B 14) 

(B15) 

where A and B are N2IA x N1IA matrices and N is the number 
of sites. Q2 is a N2H x N2H diagonal matrix, and its diagonal 
elements are given by the differences of the HF eigenvalues. C 
is an N1Il x N1Il matrix, 

_ /-^ph,kk' \ 

V^p,kk' / 
(B 16) 

where kk' = hh' or pp'. 
With these definitions, it is easy to prove the following:6,37 

(1) N1Il HO modes consist only of ph and hp components of 
Q. (2) Frequencies of other N1Il HO modes are identical to 
the diagonal elements of fib- These include N zero frequency 
modes (ZFM). (3) Except for the ZFM, every HO mode v has 
its conjugate mode v so that Qv = —Qv-
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